Sulfonation of Surface-Initiated Polynorbornene Films

نویسندگان

  • Brad J. Berron
  • P. Andrew Payne
  • Kane Jennings
چکیده

We report the sulfonation of surface-initiated polynorbornene with acetyl sulfate to produce ultrathin ionomer films. The complete process consists of exposure of a hydroxyl-terminated self-assembled monolayer (SAM) on gold to a norbornenyl diacid chloride, attachment of Grubbs first generation catalyst, ring-opening metathesis polymerization (ROMP), and sulfonation. Structural and chemical changes in the film upon sulfonation are confirmed by RAIRS, contact angle goniometry, ellipsometry, optical microscopy, and electrochemical impedance spectroscopy. Sulfonation of surface-initiated polynorbornene results in a highly nonuniform surface morphology which can be relaxed to a more uniform film through exposure to dimethyl sulfoxide at room temperature. The sulfonated polynorbornene films have an intermediate surface energy (θA(H2O) ≈ 75°) and a low resistance against proton transport (Rf ≈ 1.6 Ω · cm), which is 6 orders of magnitude lower than that of the original polynorbornene film. The sulfonated films are far more stable than the original polynorbornene films because of a ∼95% diminution of olefin content within the film. Sulfonated poly(butylnorbornene) films were prepared analogously to demonstrate the versatility of this approach toward ionomer films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and structure of surface-initiated poly(n-alkylnorbornene) films.

We report the surface-initiated growth of poly(alkylnorbornene) films via ring-opening metathesis polymerization (ROMP). The films are grown by exposure of a vinyl-terminated self-assembled monolayer (SAM) on gold to Grubbs first-generation catalyst and the subsequent exposure to an alkylnorbornene monomer. We investigate the influence of alkyl side chains on the structure, barrier, surface pro...

متن کامل

Surface-initiated growth of ionomer films from pt-modified gold electrodes.

The ability to chemically wire ionomer films to electrode surfaces can promote transport near interfaces and impact a host of energy-related applications. Here, we demonstrate proof-of-concept principles for the surface-initiated ring-opening metathesis polymerization (SI-ROMP) of norbornene (NB), 5-butylnorbornene (NBH4), and 5-perfluorobutylnorbornene (NBF4) from Pt-modified gold substrates a...

متن کامل

Effect of side groups in polynorbornene films for transparent conductive substrates.

The imide-functionalized polynorbornene films exhibited excellent optical transparency in the visible range as well as high thermal stability over 200 degrees C. The indium tin oxide (ITO) thin films were coated on the imide-functionalized polynorbornene films at various deposition temperatures by employing radio-frequency (r.f.) planar magnetron sputtering system. The resulting ITO-coated imid...

متن کامل

High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization.

High-density polynorbornene azobenzene liquid-crystalline brushes are synthesized on quartz substrates by surface-initiated ring-opening metathesis polymerization (SI-ROMP) using Grubbs third-generation catalyst. The grafting process is controlled over the thickness of the brush from a solid-supported substrate in a stoichiometric manner. A highly ordered liquid-crystal arrangement was formed f...

متن کامل

Characterization of a sulfonated pentablock copolymer for desalination applications

Water and salt transport properties were determined in a family of sulfonated pentablock copolymers to characterize their potential as chlorine-tolerant desalination membrane materials. The degree of sulfonation, block molecular weight, and casting conditions can be independently varied to tune the transport properties of these materials. Data for water uptake, water permeability, salt permeabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008